Count Variable

In statistics, **count data** is a statistical data type, a type of data in which the observations can take only the non-negative integer values {0, 1, 2, 3, ...}, and where these integers arise from counting rather than ranking. The statistical treatment of count data is distinct from that of binary data, in which the observations can take only two values, usually represented by 0 and 1, and from ordinal data, which may also consist of integers but where the individual values fall on an arbitrary scale and only the relative ranking is important.

Statistical analyses involving count data includes simple counts, such as the number of occurrences of thunderstorms in a calendar year, and categorical data in which the counts represent the numbers of items falling into each of several categories.

An individual piece of count data is often termed a **count variable**. When such a variable is treated as a random variable, the Poisson, binomial and negative binomial distributions are commonly used to represent its distribution.

Graphical examination of count data may be aided by the use of data transformations chosen to have the property of stabilising the sample variance. In particular, the square root transformation might be used when data can be approximated by a Poisson distribution (although other transformation have modestly improved properties), while an inverse sine transformation is available when a binomial distribution is preferred.

Here the count variable would be treated as a dependent variable. Statistical methods such as least squares and analysis of variance are designed to deal with continuous dependent variables. These can be adapted to deal with count data by using data transformations such as the square root transformation, but such methods have several drawbacks; they are approximate at best and estimate parameters that are often hard to interpret.

The Poisson distribution can form the basis for some analyses of count data and in this case Poisson regression may be used. This is a special case of the class of generalized linear models which also contains specific forms of model capable of using the binomial distribution (binomial regression, logistic regression) or the negative binomial distribution where the assumptions of the Poisson model are violated, in particular when the range of count values is limited or when overdispersion is present.

This article includes a list of references, related reading or external links,
but its sources remain unclear because it lacks inline citations. (November 2009) (Learn how and when to remove this template message) |

- Cameron, A. C.; Trivedi, P. K. (2013).
*Regression Analysis of Count Data Book*(Second ed.). Cambridge University Press. ISBN 978-1-107-66727-3. - Hilbe, Joseph M. (2011).
*Negative Binomial Regression*(Second ed.). Cambridge University Press. ISBN 978-0-521-19815-8. - Winkelmann, Rainer (2008).
*Econometric Analysis of Count Data*(Fifth ed.). Springer. doi:10.1007/978-3-540-78389-3. ISBN 978-3-540-77648-2.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

What We've Done

Led Digital Marketing Efforts of Top 500 e-Retailers.

Worked with Top Brands at Leading Agencies.

Successfully Managed Over $50 million in Digital Ad Spend.

Developed Strategies and Processes that Enabled Brands to Grow During an Economic Downturn.

Taught Advanced Internet Marketing Strategies at the graduate level.

Manage research, learning and skills at defaultLogic. Create an account using LinkedIn or facebook to manage and organize your Digital Marketing and Technology knowledge. defaultLogic works like a shopping cart for information -- helping you to save, discuss and share.

Visit defaultLogic's partner sites below: