UTF-EBCDIC is a character encoding used to represent Unicode characters. It is meant to be EBCDIC-friendly, so that legacy EBCDIC applications on mainframes may process the characters without much difficulty. Its advantages for existing EBCDIC-based systems are similar to UTF-8's advantages for existing ASCII-based systems. Details on UTF-EBCDIC are defined in Unicode Technical Report #16.

To produce the UTF-EBCDIC encoded version of a series of Unicode code points, an encoding based on UTF-8 (known in the specification as UTF-8-Mod) is applied first (creating what the specification calls an I8 sequence). The main difference between this encoding and UTF-8 is that it allows Unicode code points U+0080 through U+009F (the C1 control codes) to be represented as a single byte and therefore later mapped to corresponding EBCDIC control codes. In order to achieve this, UTF-8-Mod uses 101XXXXX instead of 10XXXXXX as the format for trailing bytes in a multi-byte sequence. As this can only hold 5 bits rather than 6, the UTF-8-Mod encoding of codepoints above U+009F is generally larger than the UTF-8 encoding.

The UTF-8-Mod transformation leaves the data in an ASCII-based format (for example, U+0041 "A" is still encoded as 01000001), so each byte is fed through a reversible (one-to-one) lookup table to produce the final UTF-EBCDIC encoding. For example, 01000001 in this table maps to 11000001; thus the UTF-EBCDIC encoding of U+0041 (Unicode's "A") is 0xC1 (EBCDIC's "A").

This encoding form is rarely used, even on the EBCDIC-based mainframes for which it was designed. IBM EBCDIC-based mainframe operating systems, such as z/OS, usually use UTF-16 for complete Unicode support. For example, DB2 UDB, COBOL, PL/I, Java and the IBM XML toolkit support UTF-16 on IBM mainframes.

Codepage layout

There are 160 characters with single-byte encodings in UTF-EBCDIC (compared to 128 in UTF-8). As can be seen, the single-byte portion is similar to IBM-1047 instead of IBM-37 due to the location of the square brackets. CCSID 37 has [] at hex BA and BB instead of at hex AD and BD respectively.

White cells containing a large single-digit number are the start bytes for a sequence of that many bytes. The unbolded hexadecimal code point number shown in the cell is the lowest character value encoded using that start byte. This value can be greater than the value which would be obtained by following the start byte with continuation bytes which are all 65 (hex 0x41), if this would result in an invalid overlong form.

Orange cells with one dot are continuation bytes. The hexadecimal number shown after a "+" plus sign is the value of the 5 bits they add.

Red cells indicate start bytes (for a sequence of that many bytes) which can never appear in properly encoded UTF-EBCDIC text, because any possible continuation would result in an invalid overlong form. For example, 0x76 is marked in red because even 0x76 0x73 (which maps to the UTF-8-Mod sequence 0xC2 0xBF) would merely be an overlong encoding of U+005F (properly encoded as UTF-8-Mod 0x5F, UTF-EBCDIC 0x6D).

Oracle UTFE

Oracle UTFE is a Unicode 3.0 UTF-8 Oracle database character set with six-byte support for supplementary characters. It is used only on EBCDIC platforms.[1]


  • Only Unicode character set for EBCDIC.
  • Length of SQL CHAR types can be specified in number of characters.
  • Binary order of the SQL CHAR columns is same as binary order of the SQL NCHAR columns if the data consists of same supplementary characters. Consequently, these columns sort the same for identical strings.[1]


  • Supplementary characters occupy six bytes instead of four bytes only. Consequently, supplementary characters need to be converted.
  • UTFE is not a Unicode standard encoding. Clients requiring UTF-8 encoding must convert data on retrieval and storage.[1]

See also


  1. ^ a b c Baird, Cathy; Chiba, Dan; Chu, Winson; Fan, Jessica; Ho, Claire; Law, Simon; Lee, Geoff; Linsley, Peter; Matsuda, Keni; Oscroft, Tamzin; Takeda, Shige; Tanaka, Linus; Tozawa, Makoto; Trute, Barry; Tsujimoto, Mayumi; Wu, Ying; Yau, Michael; Yu, Tim; Wang, Chao; Wong, Simon; Zhang, Weiran; Zheng, Lei; Zhu, Yan; Moore, Valarie (2002) [1996]. "Appendix A: Locale Data". Oracle9i Database Globalization Support Guide (PDF) (Release 2 (9.2) ed.). Oracle Corporation. Oracle A96529-01. Archived (PDF) from the original on 2017-02-14. Retrieved . 

External links

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Connect with defaultLogic
What We've Done
Led Digital Marketing Efforts of Top 500 e-Retailers.
Worked with Top Brands at Leading Agencies.
Successfully Managed Over $50 million in Digital Ad Spend.
Developed Strategies and Processes that Enabled Brands to Grow During an Economic Downturn.
Taught Advanced Internet Marketing Strategies at the graduate level.

Manage research, learning and skills at defaultLogic. Create an account using LinkedIn or facebook to manage and organize your Digital Marketing and Technology knowledge. defaultLogic works like a shopping cart for information -- helping you to save, discuss and share.

Visit defaultLogic's partner sites below:
PopFlock.com : Music Genres | Musicians | Musical Instruments | Music Industry
NCR Works : Retail Banking | Restaurant Industry | Retail Industry | Hospitality Industry

  Contact Us